令和7年9月期東京海洋大学学位記·修了証書授与式 学長式辞

学部卒業生の皆さん、乗船実習科修了生の皆さん、大学院博士前期課程および後期課程修了生の皆さん、そして、論文提出によって博士号を取得された皆さん、本日は誠におめでとうございます。また、本日、ご多忙にもかかわらず、ご臨席を賜りました 独立行政法人 海技教育機構 理事長 田島哲明(たじまのりあき)様、一般社団法人 楽水会々長 松本和明 様、一般社団法人 海洋会々長 関根 博 様、日本郵船株式会社 常務執行役員 樋口久也(ひぐちひさや)様、株式会社 商船三井 専務執行役員 谷本光央(たにもと みつひさ)様、川崎汽船株式会社 海事戦略グループ長 竹内幸太郎(たけうち こうたろう)様には厚く御礼申し上げます。

本日、修了の日を迎えた皆さんには、東京海洋大学で学んだ知識と経験を活かして、新し い環境で、思う存分活躍されることを期待しています。本学では、実学重視の教育を行って います。実験・実習・演習など、現物に触れて、頭と体で学んだことは、深く記憶に残って いますので、実際の仕事においても、即戦力の人材として大いに活躍できると信じています。 一方で、皆さんの中には、講義室で習った授業科目では、単位は取れたものの、実は良く理 解できていない部分がある、と不安に感じている人もいるかと思います。しかし、心配は無 用です。「学習履歴がある」という事実そのものが問題解決を助ける基盤になるからです。 心理学では「潜在記憶」や「プライミング効果」として説明される現象に近いと思われます が、「このキーワードは授業中に聞いたことがあるぞ」とか「先生が授業中に面白いコメン トしてた」などという記憶があれば、皆さんの頭脳の神経細胞、いわゆるニューロンのシナ プス結合が完全には消えていない証拠だと言えます。学生時代に理解できなかったことでも、 改めて考え直せば、残されたシナプス結合が再利用されて、ある瞬間にすっと腑に落ちて、 視野が広がる瞬間を実感できると思います。このように、「昔習った気がする」とか「聞い たことがある」という程度の記憶であっても、実は大変重要で、皆さんが新しい環境で仕事 をしていく際の強力な武器になります。折に触れて、本学で学んだ事を思い出し、たくさん の「腑に落ちる」経験をして欲しいと思います。

ところで、皆さんは生成 AI、特に大規模言語モデル (LLM) の機械学習においても「腑に落ちる」ことと似た現象が起こることをご存じでしょうか。その現象は「Grokking」と呼ばれています。「Grok」とは「完全に理解する」とか「良く分かる」という意味だそうです。一般的な統計モデルでは、パラメータ数が多ければ、ノイズにまで適合して、モデルとしての予測精度が上がらない、いわゆる「過剰適合 (Over fitting)」が起こります。しかし LLM

の場合では、「過剰適合」に至っても、ひたすら学習を継続していると、突然モデルの汎化性能、すなわち検証データに対する予測精度が急激に向上する「Grokking」現象が起こるそうです。それはまさに AI が腑に落ちる瞬間と言えそうです。この話は、日本の AI 研究の第一人者である東京大学の松尾豊先生の講演の中で初めて知りました。その時に私が思い出したのは「読書百遍 意おのずから通ず」という、昔、国語の先生が言われていた言葉でした。これは、中国の三国時代の言葉で、「難解な書物でも何度も繰り返し読んでいれば、いつか意味が理解できるようになる」という意味です。おそらく皆さんも経験したことがあるのではないでしょうか。このことから、LLM で用いられているニューラルネットワークは人間の知能のメカニズムを非常に良くモデル化しているのではないかとも思えます。

AIで例えれば、皆さんはこれまで正解が与えられている「教師あり学習」を行ってきたと言えます。しかし、社会に出てからは学習していない問題にも取り組まなければなりません。もちろん、過去の知識と経験を適用する「転移学習」や、職場での「追加学習」を行うことはできると思います。しかし、皆さんが職場で主要な役割に就くようになると、今まで誰も取り組んだことのない課題を任されることになります。そのような時、AIでは「強化学習」を行うことになります。「強化学習」とは試行錯誤を繰り返して、得られる報酬を最大化する行動を自ら学習する方法で、いわゆる「教師なし学習」の一つです。「強化学習」での問題点は、成功例や失敗例など、数多くの学習が必要となる点です。実社会では、何度も失敗を繰り返すと非常にまずい状況に陥ります。それでは、どうしたら良いのでしょうか。

実は、皆さんには大勢の強力な味方がいます。それは、創立 22 周年を迎える東京海洋大学と その前身である東京商船大学や東京水産大学を卒業した 数多くの先輩たちです。世界中に広がる卒業生のネットワークにコンタクトすれば、成功の秘訣や、失敗から得た教訓を親切に教えてくれることでしょう。本日、東京海洋大学から船出する皆さんには、是非、楽水会や海洋会の一員となり、先輩達とのコミュニケーションを持つことによって、皆さん自身の強化学習を継続し、実社会で大活躍できる人材に成長して欲しいと思います。それと同時に、将来的には、皆さん自身が、後輩たちの成長を力強く支援する存在になって欲しいと思います。そして、もし、皆さん自身が「Grokking」を急いで起こす必要が出てきたら、いつでも東京海洋大学に足を運んで下さい。本学はいつでも、また、いつまでも皆さんを温かく迎え入れる大学でありたいと思っています。

皆さんの元気に満ち溢れた笑顔に再び会えることを期待しています。

令和7年9月26日 東京海洋大学長 井関俊夫 AY2025 September Commencement ceremony, Tokyo University of Marine Science and Technology (Undergraduate School, Advanced Onboard Training Course for Mercantile Marine, Graduate School)

President's Address

Faculty graduates, students who have completed the Advanced Onboard Training Course for Mercantile Marine, students who have completed the Graduate School Master's Course and Doctoral Course, and a person who has gained a doctorate by submitting a dissertation, congratulations today. Mr. Noriaki Tajima, President of Japan Agency of Maritime Education and Training for Seafarers; Mr. Kazuaki Matsumoto, President of Rakusuikai; Mr. Hiroshi Sekine, Chairman of Kaiyo-kai; Mr. Hisaya Higuchi, Managing Executive Officer of Nippon Yusen Kabushiki Kaisha; Mr. Mitsuhisa Tanimoto, Senior Managing Executive Officer of Mitsui O.S.K Lines, Ltd; and Mr. Kotaro Takeuchi, General Manager of Maritime Strategy Group, Kawasaki Kisen Kaisha, Ltd, I would like to extend my sincere gratitude for your attendance at this commencement ceremony despite your busy schedules.

I am hopeful that every one of you who are graduating today will use your knowledge and experiences acquired at Tokyo University of Marine Science and Technology to excel and succeed in a new environment. Tokyo University of Marine Science and Technology values practical education. I have no doubt that you will thrive in your job and be an immediate asset because what you have learned by doing--through experiments, field training and exercises-is deeply imprinted in your memory. On the other hand, some of you may be feeling anxious because there are some parts of the subjects you studied that you have not fully captured despite the fact that you have earned credits for your classes. However, there is no need to worry. The fact that "you have a learning history" provides a foundation that will help you solve problems. This "learning history" resembles phenomena that are explained in psychology as "implicit memory" or "the priming effect." Recalling a technical term as something that you heard during a class or remembering your professor making a strange comment about provides evidence that the synapses of your brain's nerve cells, or neurons, are not completely lost. I believe that, if you revisit something you never fully understood as a student, the remaining synapses will be used again to allow you to understand it this time and you will feel your perspective broadening at that moment. Thus, even a memory so dim that you can only say "I might have learned it before" or "I have heard it" is, in fact, extremely important, and will serve as a powerful tool to thrive in your new professional environment. I hope that you will, from time to time, recall what you didn't fully understand as a student of TUMSAT, reflect on it again, and finally "grok" it.

Now, do you know that there is a similar phenomenon called "grokking" in generative AI, particularly in a large language model (LLM), a type of machine learning model? Generally, statistical models with many parameters tend to be affected by observation noise and suffer from so-called "overfitting," resulting in inaccurate predictions. However, in the case of an LLM, even if it has reached "overfitting," if training continues, "grokking" occurs, in which the model's Generalization Performance, i.e., its predictive accuracy on a validation data set, suddenly improves. In other words, just like us, AI can fully understand things that it was unable to understand in the past by studying them repeatedly. I learned this for the first time at a lecture by Professor Yutaka Matsuo at the University of Tokyo. At that moment I remembered a proverb taught by my elementary school teacher, "Reading a book a hundred times makes its meaning clear." This is from the Three Kingdoms period in China and means that if you read a difficult book over and over, you will understand it one day. Perhaps you will all have this experience. Based on this, it seems to us that the neural network employed in LLMs emulates the human intelligence mechanism very well.

If compared to AI, it can be said that your learning so far has been "supervised learning" in that the correct answer is always provided. When you enter the workforce, at times you will need to deal with problems that you have never learned how to solve. Of course, you can apply "transfer learning" using your knowledge and experience from the past or acquire "incremental learning" on the job. When you assume a more important position at work, however, you will be assigned tasks that nobody has tackled before. In the face of such a challenge, AI would perform "reinforcement learning." Reinforcement learning is a form of so-called "unsupervised learning." In this learning approach, AI voluntarily learns actions through trial and error to maximize the reward it expects to gain. A drawback of reinforcement learning is that it requires a vast amount of learning based both on successes and failures. You will find yourself in trouble if you repeat failing in the real world. What should you do then?

Please know that there are many powerful allies around you. They are many alumni who graduated before you from Tokyo University of Marine Science and Technology, which is soon to be 22 years old, and its predecessors, Tokyo University of Mercantile Marine and Tokyo University of Fisheries. Utilize the extensive global alumni network. I can assure you that many alumni would be happy to offer you tips for success and lessons learned from failure. I would

also encourage you to join Rakusuikai and Kaiyokai and communicate with your senior alumni so that you will continue with your reinforcement learning and grow to be an asset who will shine in the real world. At the same time, I would love to see you in the future become a powerful supporter of the growth of your junior fellow graduates. Come back to TUMSAT if you need to "grok." We will always welcome you back with open arms at any time.

I hope to see your big smiles again.

September 26, 2025

Toshio Iseki, President, Tokyo University of Marine Science and Technology